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Abstract 

Background:  Many transcription factors (TFs), such as multi zinc-finger (ZF) TFs, have multiple DNA binding domains 
(DBDs), and deciphering the DNA binding motifs of individual DBDs is a major challenge. One example of such a TF 
is CCCTC-binding factor (CTCF), a TF with eleven ZFs that plays a variety of roles in transcriptional regulation, most 
notably anchoring DNA loops. Previous studies found that CTCF ZFs 3–7 bind CTCF’s core motif and ZFs 9–11 bind a 
specific upstream motif, but the motifs of ZFs 1–2 have yet to be identified.

Results:  We developed a new approach to identifying the binding motifs of individual DBDs of a TF through analyz-
ing chromatin immunoprecipitation sequencing (ChIP-seq) experiments in which a single DBD is mutated: we train 
a deep convolutional neural network to predict whether wild-type TF binding sites are preserved in the mutant TF 
dataset and interpret the model. We applied this approach to mouse CTCF ChIP-seq data and identified the known 
binding preferences of CTCF ZFs 3–11 as well as a putative GAG binding motif for ZF 1. We analyzed other CTCF data-
sets to provide additional evidence that ZF 1 is associated with binding at the motif we identified, and we found that 
the presence of the motif for ZF 1 is associated with CTCF ChIP-seq peak strength.

Conclusions:  Our approach can be applied to any TF for which in vivo binding data from both the wild-type and 
mutated versions of the TF are available, and our findings provide new potential insights binding preferences of 
CTCF’s DBDs.
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Background
Mutations of individual DNA binding domains (DBDs) 
within transcription factors (TFs) have been associated 
with developmental [1, 2] and bleeding [3] disorders, and 
differences between species in individual DBDs within 
TFs have been associated with species-specific gene 
expression [4] and speciation [5]. Although DNA binding 

motifs of thousands of metazoan TFs have been charac-
terized, many TFs have multiple DNA binding domains 
(DBDs) whose specific binding preferences are unknown. 
In fact, the most common TF family in humans, 
Cys2His2 (C2H2) zinc finger (ZF) TFs [6, 7], consists of 
TFs with multiple ZF DBDs, and many of these ZFs’ indi-
vidual binding preferences have not been investigated.

A previous study investigated the binding preferences 
of ZFs within C2H2 ZF TFs by doing in  vitro Bacterial 
1-Hybrid (B1H) assays of over 160,000 ZFs [8] to deter-
mine the individual 3 bp [9] binding preferences of each 
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ZF. The study then presented a machine learning model 
trained on this data to predict the position weight matri-
ces (PWMs) of C2H2 ZF TFs. Unfortunately, for many 
TFs, less than two thirds of PWM columns were pre-
dicted correctly, demonstrating the limitations of using 
in  vitro assays of individual DBDs to determine bind-
ing preferences of DBDs within a full TF. Another study 
described how DBDs can influence each other’s binding 
within the context of a TF [10], further illustrating the 
limitations of studying binding preferences of individual 
DBDs out of context.

To identify the binding preferences of DBDs within a 
TF within the context of the other DBDs, previous stud-
ies have introduced loss-of-function mutations within 
specific DBDs, assayed the sequences to which the 
mutants bind, and used the results of the assay to deter-
mine the specific components of TFs’ motifs that interact 
with a DBD [1, 11, 12]. In particular, one of these studies 
induced loss-of-function histidine-to-arginine mutations 
separately each of the 11 ZFs of mouse CCCTC-binding 
factor (CTCF), a C2H2 ZF TF that has been implicated 
in diverse roles in transcriptional regulation [13, 14] due 
to its ability to anchor DNA loops [15, 16] likely through 
interactions with cohesin [17–19], and did ChIP-seq on 
each mutant [11]. The study found that ZFs 3 through 
7 interact with part of CTCF’s known core motif, a 19 
base-pair sequence that has been shown to bind CTCF 
in many studies [20]. The study also found that ZFs 8 
through 11 interact with an upstream motif that had 
been identified by a few earlier studies [21–23] (Supple-
mental Figure 1), demonstrating the viability of assaying 
binding of mutated TFs to understand individual DBD 
binding preferences. These findings were supported by 
additional studies; one study used CTCF deletions to 
show that only ZFs 4 through 7 interact with base pairs 4 
through 15 of its core motif [24], and another used elec-
trophoretic mobility shift assays (EMSA) of CTCF with 
parts of its motif mutated to suggest that ZF 7 or 8 binds 
to base pairs four through six of the core motif [25]. In 
addition, recent studies showed that mutations in ZFs 1 
and 10 disrupt DNA loops [26, 27]; another recent study 
showed that CTCF-s, a CTCF isoform that does not have 
ZFs 1–3, is unable to interact with cohesin [28]; and an 
additional recent study showed that mutations in CTCF’s 
ZFs have been found in cancer and that some, including 
a mutation in ZF 2, lead to a loss of binding [29]. These 
studies demonstrate the potential value in understand-
ing the ways that CTCF’s ZFs that do not bind to the core 
motif interact with DNA.

To better leverage in  vivo experiments of mutated TFs 
to decipher the binding preferences of individual DBDs, 
we developed a novel approach to analyzing the data from 
mutant TF ChIP-seq experiments [11]. In contrast to the 

earlier study, which did de novo motif discovery on the 
sequences within the peaks from wild-type CTCF and 
then scanned the peaks from the mutated CTCF for the 
discovered motifs [11], we directly leverage the differences 
between the wild-type and mutant datasets. We do this by 
setting up a differential peak prediction task, in which we 
train a deep convolutional neural network [30, 31] to use 
DNA sequence to predict whether a peak from wild-type 
TF ChIP-seq is preserved in the mutant dataset or is sig-
nificantly stronger in the wild-type dataset. Our intuition is 
that, if a model can predict whether a peak is significantly 
stronger in the wild-type dataset than in the mutant data-
set, then the model should have learned sequence patterns 
related to the binding preferences of the mutated DBD, 
and interpreting the model should reveal these binding 
preferences.

We applied our approach to the CTCF mutant ChIP-
seq datasets [11] and interpreted what each model learned 
to identify motifs associated with each ZF. We trained a 
separate model for every ZF because we identified over 
ten thousand significantly differential peaks between the 
wild-type and each mutant, suggesting that every ZF plays 
some role in CTCF binding. Our model interpretations 
recapitulated earlier findings about which ZFs interact with 
the core and upstream motifs, illustrating the success of 
our approach. The interpretations also identified a novel 
downstream motif, GAG​CCA​, that may be bound by ZF 
1. We found that the core motif followed by our discov-
ered downstream motif occurs in CTCF HT-SELEX reads 
from the final cycle, that the core motif followed by the 
discovered downstream motif occurs more frequently in 
CTCF ChIP-seq peaks that do not overlap CTCF-s ChIP-
seq peaks than in those that do overlap CTCF-s ChIP-seq 
peaks, and that the discovered downstream motif matches 
in  vitro data  based computational predictions of the ZF 
1 motif and has been shown to bind CTCF in a previous 
EMSA study. We also found that the presence of the dis-
covered downstream motif is correlated with CTCF peak 
strength. Our approach can be applied to any TF with mul-
tiple DBDs for which wild-type and mutated DBD in vivo 
binding data are available, and our results from applying 
our approach to CTCF provide the first insights into the 
in  vivo binding sequence associated CTCF’s most down-
stream ZF.

Results
Putative motifs of CTCF’s zinc fingers identified 
by interpreting wild‑type versus mutant differential peak 
prediction models
To identify motifs related to the binding of each ZF in 
CTCF, we trained and interpreted a neural network for 
predicting whether a peak would be significantly weaker 
according to DESeq2 [32] in the mutant dataset than in 
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the wild-type dataset (Methods, Supporting Website). 
Interestingly, although multiple ZFs have been implicated 
in interacting with RNA [19, 27] and ZF 1 is thought to 
have more interactions with RNA than DNA [18], for 
every ZF including ZF 1, we found over ten thousand 
peaks that are significantly stronger in the wild-type than 
they are in the mutant (13,307 for ZF 1, Supplemental 
Table  1), suggesting that every ZF may play some role 
in CTCF’s interaction with DNA. We therefore trained 
a separate model for each ZF mutant ChIP-seq dataset 
from [11] (Supplemental Figure  1). Upon finding that 
our models had good performance, we used DeepLIFT 
with the Rescale rule [33] followed by TF-MoDISco [34] 
to identify motifs (called “TF-MoDISco motifs”) that the 
model had learned (Fig.  1, Methods, Supporting Web-
site). We identified TF-MoDISco motifs for all the ZFs in 
CTCF.

Neural network outperforms models with original motif hit 
scores as features
To evaluate our neural network and the TF-MoDISco 
motifs, we compared three approaches for predicting 
whether a CTCF peak would be substantially weaker 
in a mutant CTCF dataset: our neural networks, logis-
tic regressions with the motif hit score of the best 
TF-MoDISco motif hit as the feature, and logistic 
regressions with motif hit scores of motif hits from [11] 

as features. We found that all models performed well 
for ZFs 3–7, but our neural networks and the logistic 
regressions with the TF-MoDISco motif hit score alone 
had substantially better performance than the logistic 
regressions with the original motif hit scores for the 
other ZFs (Fig. 2a). For ZFs 8–11, we also compared the 
performances of our neural networks and the logistic 
regressions with the TF-MoDISco motif hit score to the 
performances of the score from single motif consist-
ing of the original upstream motif followed by five base 
pairs (the most common spacing found in [11]) fol-
lowed by the original core motif. These logistic regres-
sions’ performances were comparable to those of the 
logistic regressions with the TF-MoDISco motif hit 
score for ZFs 9–11 and worse than other methods for 
ZF 8 (Supplemental Figure 2).

Important features learned by neural networks include 
known motifs for zinc fingers 3–11 and novel motifs 
for zinc fingers 1–2
Interpreting neural networks revealed known CTCF motifs
We compared the TF-MoDISco motifs to known CTCF 
motifs. We found that our neural network learned 
motifs similar to the known core motif as being indica-
tive of a stronger peak in the wild-type for ZFs 3–7 and 
motifs similar to the known upstream motif for ZFs 8-11 
as being indicative of a stronger peak in the wild-type, 

Fig. 1  Using Differential Peak Prediction to Identify Motifs of Different DNA Binding Domains. To identify the motif of a DBD, we train a deep 
convolutional neural network to predict whether a TF ChIP-seq peak is preserved or significantly weaker in a dataset from that TF with a mutated 
DBD relative to a dataset from the wild-type TF. We then use DeepLIFT followed by TF-MoDISco to identify the motifs that the neural network 
learned. The browser tracks in this figure are pooled replicate fold-change bigWigs from wild-type CTCF and CTCF with ZF1 mutated from [11] and 
were visualized using the WashU Epigenome Browser [35] with assembly mm10 [36]. The motif logo in this figure is the motif we discovered when 
interpreting the model for the ZF 1 mutant
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which is consistent with the findings of [11] (Fig.  2b). 
Previous studies identified the five base pair spacing in 
our top TF-MoDISco motif as the most common spac-
ing between the core and upstream motifs but also found 
that a six base pair spacing occurred frequently [11, 21–
23, 37]. We therefore investigated all the TF-MoDISco 

motifs for each neural network (Supporting Website) 
and, for ZFs 9–11, found that the second highest-ranked 
TF-MoDISco motif (the TF-MoDISco motif with the 
second highest number of supporting seqlets) was the 
upstream motif, followed by six base pairs, followed by 
the core motif (Supplemental Figure 3).

Fig. 2  Performance of Neural Networks. a We compared the performance of our neural networks to those of logistic regressions in which the 
features were the motif hit scores of the motifs from [11]. We also compared both sets of models to logistic regressions with the top TF-MoDISco 
motif hit scores as their only features. Performance was measured by the area under the precision-recall curve (AUPRC). b We aggregated the 
hypothetical scores of the seqlets corresponding to the motifs from DeepLIFT followed by TF-MoDISco to visualize the TF-MoDISco motifs. The 
box indicates the discovered downstream motif, and the underlined part indicates the weak putative motif for ZF 2. The TF-MoDISco motif for ZF 
1 has a G or a T at a position where the other TF-MoDISco motifs have a G (indicated by first arrow) and a G or an A at a position where the other 
TF-MoDISco motifs have a G (indicated by second arrow). The TF-MoDISco motif for ZF 8 emphasizes a downstream nucleotide in the upstream 
motif (indicated by arrow)
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Interpreting neural networks revealed novel motifs for ZFs 
1–2 confirmed by CTCF HT‑SELEX data
When identifying the important sequences for the neu-
ral networks for the mutants of ZFs 1–2, we discovered 
a novel downstream GAG​CCA​ motif occurring 2 bp 
downstream of the core motif and a weaker ATT motif 
connecting the core and discovered downstream motif 
as being indicative of a stronger peak in the wild-type 
(Fig. 2b, Supplemental File 1). To investigate if CTCF can 
bind these motifs, we re-analyzed published HT-SELEX 
data for CTCF [38] to determine if there is an enrichment 
of reads containing the core followed by the discovered 
downstream motif in cycle 4 (final round) relative to 
cycle 0 (control) (Methods). First, to evaluate the reli-
ability of this approach, we did this for the core motif 
only and found a significant enrichment (p = 0.0) (Sup-
plemental Figure  4). We then found an enrichment for 
the core motif followed by the discovered downstream 
motif (p = 1.17 × 10− 245) (Fig. 3b). In fact, the HT-SELEX 
reads with the best matches to the core motif followed 
by the downstream motif (FIMO q-value < 0.001) have 
ATT connecting the two motifs (Supplemental Figure 5), 
which is the putative motif that we found for ZF 2.

Discovered downstream motif is associated with lack 
of CTCF‑s binding
We also compared the p-values of the motif hits for the 
core followed by the discovered downstream motif in 
HeLa cell ChIP-seq peaks for CTCF and CTCF-s – the 
alternative isoform of CTCF that is missing ZF 1, ZF 
2, and part of ZF 3 – from [28]. We found that these 
p-values were significantly lower (negative log base ten 
of the p-values was significantly higher) for the CTCF 
peaks that do not overlap CTCF-s peaks than they 
were for the CTCF peaks that do overlap CTCF-s peaks 
(p  = 4.00 × 10− 6), suggesting that the lack of ZFs 1–3 
is associated with a lack of binding to the downstream 
motif. We then investigated whether this result could 
be explained by the core motif followed by the down-
stream motif occurring more frequently in CTCF bind-
ing sites that are less reproducible across experiments. 
We did this by downloading HeLa cell CTCF ChIP-seq 
peaks from ENCODE [39] and comparing the core fol-
lowed by the discovered downstream motif hit p-values 
for the CTCF ChIP-seq peaks from [28] that overlap the 
ENCODE CTCF ChIP-seq peaks to those that do not. 
For this comparison, we found a significant trend in the 

opposite direction (p = 2.77 × 10− 322) (Fig. 3c). Since our 
putative motifs for ZFs 1, 2, and 3 are all part of the core 
followed by the downstream motif, we cannot be certain 
of the relative contributions of the binding of each of 
these 3 ZFs to these results, but they do suggest that the 
lack of the core followed by the discovered downstream 
motif is associated with the lack of binding of CTCF ZFs 
1–3.

Discovered downstream motif has supporting evidence 
from previous CTCF studies
We obtained additional evidence that our discovered 
downstream motif interacts with CTCF. The most non-
degenerate part of this motif (GAG) is almost identical 
to the computationally predicted motif for ZF 1 accord-
ing to multiple models that were trained on in vitro ZF 
binding data from B1H assays (Fig.  3a, Supplemental 
Figure 6), suggesting that ZF 1 interacts with this down-
stream motif [40–42]. In addition, a recent study showed 
that the upstream four nucleotides of this downstream 
motif are found at CTCF sites in the mouse IgH locus; 
this study did EMSA on multiple variants of the CTCF 
motif including two variants containing these upstream 
four nucleotides and found that CTCF was able to bind 
both variants [43]. Furthermore, the downstream 3 bp of 
this motif (CCA) is similar to the upstream 3 bp of the 
4 bp downstream motif identified in CTCF-cohesin co-
binding sites in [44]. Despite this evidence suggesting the 
existence of our downstream motif, this motif has not 
been previously shown to directly interact with CTCF ZF 
1 in vivo.

Neural networks’ nucleotide‑level relative importance scores 
reveal putative combinatorial binding preferences that were 
supported by in vitro TF binding assays
Our neural networks’ differences between relative impor-
tance scores of nucleotides in motifs for different ZFs 
provided potential insights into additional differences 
between CTCF’s binding preferences when different ZFs 
interact with DNA. For example, the TF-MoDISco motif 
for the mutant of ZFs 1–2 had a degenerate position 
in the core motif that could be a G or a T and another 
that could be a G or an A. In contrast, the TF-MoDISco 
motifs for the mutants of ZFs 3–7 placed a substantially 
stronger importance on the G than the T in the first posi-
tion, and the TF-MoDISco motifs for the mutants of ZFs 
8–11 placed no importance on the T in that position. 

Fig. 3  Comparisons of Discovered Downstream Motif to Other CTCF Data. a We compared our TF-MoDISco motifs from the mutants of ZFs 1 
and 2 to aggregated reads from CTCF HT-SELEX cycle 4 and to computationally predicted motifs of CTCF’s DBDs from the RCADE2 model, which 
was trained on in vitro B1H ZF binding data. b We compared motif hits of the core followed by discovered downstream motif in reads from CTCF 
HT-SELEX data in cycle 0 to cycle 4. c We compared the strength of the core followed by discovered downstream motif in HeLa cell CTCF peaks from 
[28] to HeLa peaks from CTCF’s alternative isoform from the same study and HeLa CTCF peaks from ENCODE [39]

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Interestingly, the EMSA done on the core followed by 
the discovered downstream motif had a T in that posi-
tion [43], showing that CTCF can bind to the core motif 
when there is a T in that position and the discovered 
downstream motif is present. Likewise, the TF-MoDISco 
motifs for the mutants of ZFs 3–11 placed no importance 
on the G in the second position, providing another exam-
ple of degeneracy being tolerated only in the presence of 
the downstream motif (Fig. 2b).

The neural networks for ZF 8 also placed higher impor-
tance on the downstream nucleotides of the upstream 
motif than did the neural networks for other ZF mutants 
(Fig.  2b). Additionally, the neural networks for ZFs that 
are thought to interact with upstream parts of the core 
motif placed a weak importance on the upstream motif, 
while the neural networks for ZFs that are thought to 
interact with downstream parts of the core motif placed 
a weak importance on the downstream motif. Thus, in 
addition to identifying putative in  vivo motifs for ZFs 
1–2, and our neural networks provided insights into the 
relative importance of various parts of motifs for interac-
tions between DNA and different ZFs.

Presence of discovered downstream motif is associated 
with CTCF peak strength
Since the discovered downstream motif is present in 
only a strict subset of wild-type CTCF peaks, we inves-
tigated whether the presence of this motif is associated 
with other differences between CTCF peaks. We identi-
fied occurrences of the upstream, core, and discovered 
downstream motifs and combinations of these motifs in 
the wild-type CTCF peaks using FIMO [45] (Supporting 
Website). We then examined the relationship between 
motif presence and peak strength (Methods). We found 
that peaks with the core motif and the discovered down-
stream motif tend to be stronger than peaks with the 
core motif that do not have the discovered downstream 
motif (p = 3.24 × 10− 106). Since the presence of a motif 
in a peak is dependent on the motif hit cutoff, we also 
applied a stricter threshold for the motif hit cutoff and 
obtained a similar result (p  = 7.77 × 10− 89). In addi-
tion, we evaluated the relationship between the motif 
hit q-values of the different motif combinations and the 
peak signal and found that the correlation is significantly 
stronger for the core motif followed by the discovered 

downstream motif than it is for the core motif alone 
(p = 2.17 × 10− 13, Supplemental Figure  7). We repeated 
this for mouse liver and heart TF ChIP-seq peaks [46]. 
We obtained similar results for the default FIMO motif 
hit cutoff (liver p = 2.81 × 10− 78, heart p = 7.65 × 10− 65), 
a stricter FIMO motif hit cutoff (liver p = 3.03 × 10− 25, 
heart p  = 5.22 × 10− 65), and the relationship between 
motif hit q-values and peak signals (liver p = 1.10 × 10− 3, 
heart p  = 2.90 × 10− 4), suggesting that the relation-
ship between the presence of the downstream motif and 
CTCF binding strength is consistent across tissues.

Discussion
We developed a new approach for discovering in vivo TF 
binding motifs for different DBDs within a TF by training 
and interpreting a neural network for predicting whether 
a wild-type TF ChIP-seq peak will be significantly 
stronger than the corresponding peak from mutated 
TF ChIP-seq data. We applied this approach to a data-
set with ChIP-seq from wild-type and mutated CTCF. 
We identified the known motifs of CTCF ZFs 3–11, 
demonstrating the success of our approach. We also dis-
covered a putative interaction between CTCF ZF 1 and 
a novel downstream GAG​CCA​ motif as well as a puta-
tive weak interaction between CTCF ZF 2 and an ATT 
motif connecting the core and discovered downstream 
motifs (Fig.  4). Our discovered downstream motif was 
supported by in vitro studies of CTCF from HT-SELEX 
[38] and EMSA [43] and in  vitro ZF studies from B1H 
assays [40, 42], the weak putative motif for ZF 2 was sup-
ported by CTCF HT-SELEX data, and the core followed 
by discovered downstream motif occurs more frequently 
in CTCF ChIP-seq peaks that are not bound by CTCF-s 
than by those that are.

However, we cannot be certain if our discovered motifs 
for ZFs 1–2 directly interact with ZFs 1–2 or tend to be 
present these when ZFs are indirectly stabilizing CTCF-
DNA interactions. Previous studies suggested that ZF 
1 interacts primarily with RNA [18], the in  vitro HT-
SELEX and EMSA assays supporting our findings were 
not limited to ZFs 1–2 [38, 43], and the stronger core fol-
lowed by downstream motif matches in the CTCF peaks 
not bound by CTCF-s might be largely explained by ZF 3, 
which has been shown to directly interact with DNA [47, 
48]. In addition, the motif for ZF2 was extremely weak 

Fig. 4  Proposed Motif for CTCF Based on Findings from Interpreting Neural Networks
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(Fig. 2b) and not predicted to interact with ZF 2 accord-
ing to machine learning models trained on in  vitro ZF 
binding data (Fig. 3a, Supplemental Figure 6), suggesting 
that this ZF may not directly interact with DNA. Like-
wise, a previous study crystalized CTCF interacting with 
DNA and neither obtained crystals for ZF 1 nor found 
base-specific interactions for ZF 2 [47]. While most of 
this study focused on an 18 bp motif that approximately 
matched our motifs for ZFs 3–7 and did not include our 
motifs for ZFs 1–2, thus not contradicting our results, 
the study had a short analysis on the interactions of ZFs 
2–7 with a longer motif, whose downstream part was 
AGT (we found ATT in the ZF 2 motif and AGT in the 
ZF 1 motif ) followed by GAG, and found that no crys-
tals were obtained for ZF 1 and that ZF 2 did not directly 
interact with DNA [47, 49]. On the other hand, a recent 
study used molecular dynamic simulations to suggest 
that human CTCF mutation L309P, a mutation in ZF 
2 that occurs in some cancer tumors, leads to both the 
loss and the creation of bonds between CTCF and DNA, 
even though the ZF and its mutant were found to face 
away from DNA, suggesting that mutating parts of ZFs 
that do not directly contact DNA can still lead to bind-
ing changes [29]. Other studies have shown that some 
ZFs interact with DNA in some contexts and RNA in 
others [50, 51]. While, to fully demonstrate that ZFs 1–2 
bind the motifs that we found, we would need to experi-
mentally test if ZFs 1–2 alone can interact with these 
sequences using an assay like EMSA, our combination of 
existing and novel approaches for using additional data-
sets to support our findings provide a foundation for fol-
lowing up on potential motif discoveries.

A recent study did ChIP-seq on wild-type CTCF in 
mouse embryonic stem cells as well as CTCF with dele-
tions of ZFs 1, 8, 9, 10, and 11 and, in addition to find-
ing that deleting ZF 8 led to weakening of topologically 
associated domains and changes in DNA methylation 
and gene expression, found a weak motif for ZF 1 that 
has some similarity but is not identical to our discovered 
downstream motif [52]. While this study did investigate 
peaks that are substantially weaker in the wild-type than 
in the mutant, the study had only one replicate for each 
mutant and for the wild-type, limiting its ability to reli-
ably detect differential binding. In contrast, the dataset 
that we used had multiple replicates for the wild-type 
and for each mutant, allowing us to identify differential 
binding events that are unlikely to be explained by dif-
ferences in when an experiment was done [32]. In addi-
tion, this previous study identified motifs associated 
with ZFs by aggregating the sequences in the differential 
regions, while we identified specific nucleotides that are 
predictive of CTCF binding being significantly stronger 
in the wild-type. This previous study not only failed to 

confidently identify our motif for ZF 1 but found that the 
motif ZF 8 is almost identical to the motifs for ZFs 9–11, 
while our motif for ZF 8 placed less importance than our 
motifs for ZFs 9–11 on the most upstream part of the 
upstream motif, matching the known biology that differ-
ent ZFs interact with different parts of their TFs’ motifs 
[9]. An additional study used protein-DNA titration to 
show that ZFs 1–4 could bind a different sequence from 
our discovered downstream motif. However, the experi-
ment was done in vitro, and the DNA sequence did not 
include the core motif, so the results could either repre-
sent a motif for these ZFs that was too rare to be learned 
by our models or a motif that is not bound by CTCF 
in vivo [53].

Our results suggest that ZF 1 may help strengthen 
CTCF’s interaction with DNA because CTCF peaks with 
the core and discovered downstream motifs tend to be 
stronger than those with only the core motif. The fact 
that multiple positions within the core motif in the motif 
associated with significantly stronger binding in the wild-
type relative to ZF 1 are partially degenerate also sug-
gests that ZF 1 may help stabilize CTCF binding in the 
presence of a 1 bp-mismatch to the core motif. This may 
explain why the previous study of this data saw little dif-
ference in CTCF ChIP-Exo signal between wild-type and 
the mutants of ZFs 1–2, as this previous study limited its 
analysis to reads overlapping the core motif [11], which 
may not have included 1 bp-mismatches. However, addi-
tional data is needed to fully understand the purpose of 
ZF 1. For example, many studies have shown that CTCF 
interacts with cohesin to establish DNA loops [17, 19, 
54], and recent studies showed that deleting ZF 1 changes 
many DNA loops and suggested that these changes 
may occur due to interactions between ZF 1 and RNA 
[26, 27]. Thoroughly investigating ZF 1’s role in CTCF-
cohesin interactions would require mutating ZF 1 and 
then assaying cohesin binding. An exciting extension to 
this work would be to apply our method to investigate 
effects of mutations of different combinations of parts of 
CTCF, where some combinations include ZF 1, on CTCF 
binding and paired RAD21 binding from recent stud-
ies that used this data to illustrate roles of ZFs 9–11 and 
other parts of CTCF in CTCF-cohesin interactions [18, 
27].

Our modeling approach enabled us to discover both 
known and putative novel motifs as well as the spacings 
between them because a neural network interpreted 
with DeepLIFT [33] followed by TF-MoDISco [34] does 
not require an explicit featurization of the sequence or 
assumptions about the sizes of the motifs and because 
the tasks for our neural networks directly contrasted 
the wild-type and mutant datasets. Some previous stud-
ies have used k-mer support vector machines (SVMs) 
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to predict TF binding [55, 56]. However, linear SVMs 
cannot identify relationships between nucleotides that 
span more than k bases, and k needs to be small (usu-
ally at most eleven) [56] so that the number of param-
eters does not become too large to be learned with the 
available data, making these models incapable of learning 
our longer motifs (Fig. 2b). Many additional studies have 
trained neural networks to predict TF binding and used 
interpretation methods similar to those that we used to 
discover known and sometimes novel motifs of TFs [57–
62]. Yet the subset of these studies that predicted CTCF 
binding failed to identify our motif for ZFs 1–2 and many 
also failed to identify the known upstream motif likely 
because, unlike our study, their models were not designed 
to directly learn individual DBD binding preferences. In 
fact, a previous study suggested that, for TFs with mul-
tiple ZFs, some ZFs have consistent binding patterns 
across the majority of binding sites, while others bind at 
only a minority of sites and do not always have the same 
spacing when binding, making their motifs difficult to 
detect when modeling all TF binding sites together [63]. 
Properly evaluating differences between wild-type and 
mutant TF binding requires multiple high-quality repli-
cates of in vivo binding data from each of a wild-type and 
mutant TF, which, unfortunately, are not always available.

Our modeling approach has several drawbacks beyond 
requiring in  vivo binding data from a mutated TF. One 
limitation is that our negative set consisted of a combi-
nation of the peaks that were comparably strong in the 
wild-type and the mutant and peaks that were stronger 
in the mutant, preventing us from identifying motifs that 
are associated with destabilizing interactions between 
ZFs in CTCF and DNA. We think this is why we did not 
identify the downstream motif identified by the previous 
study of this dataset [11], a motif that is thought to desta-
bilize the binding of ZFs 2–3 to DNA. One possible way 
to extend our neural network to handle this case would 
be to train and interpret a regression model for predict-
ing the fold-change of the wild-type versus the mutant 
peak strengths.

Neural Networks also have inherent limitations, 
regardless of how their tasks are defined. For exam-
ple, neural networks require a large number of train-
ing examples [64], so they may not always be usable for 
mutants that do not affect at least a few thousand peaks, 
and they may not be able to learn motifs that are not pre-
sent in at least a few thousand peaks in the training set. 
This may explain why our neural network was unable to 
identify the slight decrease in the frequency of C relative 
to the T in the eighth position of the core motif identi-
fied by a previous study of the peaks that were lost in a 
ZF 1 mutant [26]. In addition, machine learning models 
may learn the minimal set of features that are necessary 

for achieving good predictive performance; as a result, 
if there are multiple highly correlated features that are 
associated with the model’s task, the model may learn 
only a strict subset of them, so the motifs learned by the 
model may exclude some biologically relevant motifs. In 
addition, convolutional neural networks require a fixed-
size input [65], which is why we used merged peak sum-
mits +/− 500 bp. Using a model that can handle inputs of 
variable sizes would enable us to incorporate additional 
information that has been proposed to affect TF binding, 
such as sequences of distal regions that loop to TF peaks. 
Recent advances have enabled sequences of variable 
sizes to be used as inputs to deep convolutional neural 
networks [66, 67], so such modeling may be achievable. 
Finally, the failure of the logistic regression with the TF-
MoDISco motif hit score to reach the performance of our 
neural network and the lack of additional meaningful TF-
MoDISco motifs for the neural networks for the mutants 
of ZFs 1–8 suggest that our methods for interpreting 
what our neural networks learned are suboptimal. Thus, 
improving neural network interpretation methods should 
enable us to use neural networks to discover additional 
novel biology. Our ability to discover known motifs 
and novel putative motifs for CTCF’s ZFs despite our 
approach’s limitations demonstrates that our approach 
provides a foundation for identifying motifs of TF DBDs.

Conclusions
To our knowledge, we are the first to train machine learn-
ing models to predict whether a wild-type TF will have 
stronger binding than a mutated TF and the first to use 
differential binding between a wild-type and mutated 
TF to decipher binding preferences of the TF’s DBDs. 
Our approach can aid future comparisons of wild-type 
TF binding to binding of TFs whose DBDs have been 
mutated, including TFs whose motifs are not well-char-
acterized. In addition, our approach could be extended 
to comparisons of other in vivo TF binding experiments, 
such as differential TF binding across conditions, cell 
types, or time points.

Methods
CTCF ChIP‑seq data processing
Since the previous study mapped the ChIP-seq reads to 
the mm9 genome assembly, we reprocessed the ChIP-
seq data from wild-type CTCF and each of the CTCF ZF 
mutants so that we could map it to mm10 and ensure that 
it met ENCODE quality control standards after applying 
recently recommended methods for filtering reads and 
identifying reproducible peaks [68, 69]. To do this, we 
downloaded the data from GSE33819 [11, 70, 71]. We 
then mapped reads to mm10 [36] and filtered reads using 
the AQUAS Transcription Factor ChIP-seq processing 
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pipeline [72], which was also used for processing the TF 
ChIP-seq data for ENCODE2 and ENCODE3 [73], with 
default parameters.

To ensure that our datasets were sufficiently high-qual-
ity for reliable downstream analysis, we used the AQUAS 
pipeline [72] with default parameters to perform strict 
quality control evaluations. We first evaluated whether 
a dataset had more signal than we would expect from 
reads randomly dispersed in the genome, which we did 
by computing the normalized strand coefficient (NSC), 
which should ideally be at least 1.05, and the relative 
strand correlation (RSC), which should ideally be at least 
0.8 [68]. We found that all the datasets had NSC > 1.05 
and RSC > 0.8. Since all of the biological replicates for 
each mutant met ENCODE standards [68], we did not 
remove any datasets for our analyses.

We ran the AQUAS pipeline [72] separately on each 
replicate from each experiment to obtain irreproducible 
discovery rate (IDR) reproducible peaks [74] self-pseudo-
replicates for each replicate. We found that the numbers 
of these peaks varied substantially across replicates due 
to different read depths per replicate. For example, repli-
cate 2 for the ZF 4 mutant had approximately 6.2 million 
reads, leading to 189 reproducible peaks across self-
pseudo-replicates, while replicate 3 for the ZF 4 mutant 
had approximately 25 million reads, leading to 24,864 
reproducible peaks across self-pseudo-replicates (Sup-
plemental Table 1).

We also pooled the reads from each dataset across the 
two or three biological replicates and ran the AQUAS 
pipeline on that [72]. For the wild-type dataset, we used 
the tagged data from Mus musculus so that the species 
and experimental protocol would be consistent with 
those of the mutants; a previous study showed that the 
peaks from the tagged data are consistent with those 
from a CTCF antibody ChIP-seq experiment done in 
the same lab [11]. The AQUAS pipeline [72] randomly 
divided the reads from each dataset into two “pooled 
pseudo-replicates,” which are groups containing half of 
the reads, and identified IDR reproducible peaks [74] 
across pooled pseudo-replicates. We obtained tens of 
thousands of IDR reproducible peaks for the wild-type 
and for each mutant (Supplemental Table 1).

Identifying differential peaks
To identify differential peaks, which we defined as peaks 
that are significantly stronger in the wild-type than they 
are in the mutant, we merged peaks from the differ-
ent datasets, computed the number of reads from each 
dataset in each merged peak, and evaluated whether 
the read depth was significantly larger in the wild-type 
than in each mutant. We merged all IDR self-pseudo-
replicate reproducible peaks from each replicate, mutant 

combination, including the R339W mutant for ZF 3, 
and the tagged Mus musculus wild-type by merging 
peaks whose summits were within 50 bp of each other 
and defining the merged peak summit to be the aver-
age of the summits of the combined peaks. We used 
these peaks because our goal was to identify peaks that 
had a significantly larger difference in signal between 
wild-type and mutant than between replicates. Next, we 
used pybedtools version 7.10.0 [75, 76] and to remove 
reads from each replicate of each experiment mapping to 
mitochondrial DNA, unknown chromosome, or random 
chromosome parts; shift reads to the right by half of their 
fragment lengths from cross-correlation analysis; and 
count the reads overlapping the five-prime end of each 
merged peak. Finally, we ran DESeq2 [32], a method for 
identifying differential signals from read count data that 
accounts for differences in read depth between samples, 
on the read counts to compare peaks in the wild-type to 
those in each mutant. We defined a peak to be a mem-
ber of the positive set, meaning significantly stronger in 
the wild-type, if the q-value was less than 0.05 and the log 
base 2 fold-change was less than − 1 and a member of the 
negative set if the log base 2 fold-change was greater than 
or equal to 0.

Training neural networks for differential peak prediction
For each mutant except for R339W, which was not 
thought to have a substantial effect on binding [11], we 
trained a separate neural network to predict whether a 
merged peak was a member of the positive or negative 
set. Merged peaks that were members of neither set were 
not used. For each merged peak, we created two exam-
ples: the sequence underlying the merged peak summit 
+/− 500 bp and the sequence underlying the reverse 
complement of the merged peak summit +/− 500 bp. 
Our training set was chromosomes 3–7, 10–19, and X; 
our validation set was chromosomes 8–9; and our test 
set was chromosomes 1–2. We one-hot-encoded the 
sequences as four-by-one thousand matrices, where 
each row contained a binary vector indicating whether 
each position in the sequence consisted of a specific 
nucleotide; this encoding method has been used in pre-
vious studies that applied neural networks to predict TF 
binding [77–79]. We encoded Ns as all zeros. Thus, our 
input data did not contain any prior information about 
what parts of the DNA sequence are involved in CTCF 
binding.

The architecture that we used for each neural network 
was three convolutional layers [30], which were each fol-
lowed by a rectified linear unit, followed by a max-pool-
ing layer. The convolutional filters in the first layer should 
identify motifs that reveal whether a peak is significantly 
stronger in the wild-type, the filters in the following 
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layers should identify combinations of those motifs, and 
the max-pooling layer encodes the assumption that a sin-
gle motif combination should not occur multiple times 
within a short region. The first convolutional layer had 60 
4 × 15 filters with stride 1 × 1, the second convolutional 
layer had 60 1 × 15 filters with stride 1 × 1, and the third 
convolutional layer had 15 1 × 15 filters with stride 1 × 1. 
Each layer had dropout rate 0.2. The max-pooling layer 
was size 1 × 35 with stride 1 × 35. The max-pooling layer 
was followed by a fully connected layer with a sigmoid 
output. We trained the neural networks using Keras ver-
sion 0.3.2 [80] with the Theano version 0.8.2 backend [81] 
using stochastic gradient descent with Nesterov momen-
tum 0.85 [82] and learning rate 0.01, batch size 200, and 
class weights set to the fraction of peaks in the other 
class. We selected these hyperparameters after evaluat-
ing performance of multiple sets of hyperparameters on 
the validation set. The early stopping criterion was three 
consecutive epochs with no improvement in recall at 80% 
precision on the validation set. We initialized weights 
to be those from a pre-trained neural network with the 
same hyper-parameters and the negative set randomly 
down-sampled to be the size of the positive set. We ini-
tialized the weights for the pre-training using Keras’s He 
normal initializer [80, 83].

Identifying important features learned by neural networks 
for differential peak prediction
Motifs that are important for making correct posi-
tive predictions are likely to be indicative of the binding 
preference of the mutant ZF because they are impor-
tant for determining whether a peak will be significantly 
stronger in the wild-type data than in the data from 
the TF in which that ZF was mutated. To identify these 
motifs, we computed the importance of every nucleotide 
in each true positive example in the validation set and 
then used these importance values to construct motifs. 
We scored the importance of every nucleotide in every 
true positive example in the validation set using Deep-
LIFT, which computes the contribution of each nucleo-
tide to a sequence’s prediction relative to a reference 
[33]. We used DeepLIFT version 0.5.5-theano with the 
Rescale rule, where scores were taken from the sequence 
layer with the target of the final convolutional layer and 
our reference was a sequence of Ns. We used an exten-
sion to DeepLIFT with the Rescale rule to compute the 
“hypothetical scores,” which can be thought of the extent 
to which the classifier is expecting a nucleotide, for each 
nucleotide at each position in each sequence [34].

We input the DeepLIFT scores and hypothetical 
scores into the TF-MoDISco method for construct-
ing “TF-MoDISco motifs” learned by the model [34]. 
TF-MoDISco first extracts sequence patterns that 

frequently have high DeepLIFT scores in ChIP-seq 
peak sequences (called “seqlets”), next computes the 
pairwise similarities between seqlets, and then uses the 
similarities to cluster the seqlets into “TF-MoDISco 
motifs.” We ran TF-MoDISco with these settings: seqlet 
FDR threshold = 0.2; gapped k-mer settings for similar-
ity computation k-mer length = 8, number of gaps = 1, 
and number of mismatches = 0; final motif width = 50; 
and minimum number of seqlets = 200. We used the 
aggregated hypothetical scores of the seqlets support-
ing each TF-MoDISco motif to construct motif images.

To make position frequency matrices from TF-
MoDISco motifs, we averaged the one-hot-encoded 
sequences at all the seqlet coordinates associated with 
the motifs. We also extracted the upstream, core, and 
discovered downstream motifs from our TF-MoDISco 
motifs (Supplemental File  1). To extract the upstream 
motif, we removed degenerate positions from the ends 
of the TF-MoDISco motif for ZF 11. We did this by first 
identifying the upstream-most position in which at 
least one nucleotide had probability > 0.60 and remov-
ing all earlier positions. We then scanned the motif 
until reaching another position at which no nucleotides 
had probability > 0.60. Because the following position 
was non-degenerate, we continued searching for an 
additional position in which no nucleotides had prob-
ability > 0.60. We removed that and all further down-
stream positions in the TF-MoDISco motif. To extract 
the core motif, we repeated the same process that we 
used for the upstream motif on the TF-MoDISco motif 
from ZF 6, except that we used a probability cutoff of 
0.40 and required two consecutive bases with nucleo-
tides passing the probability cutoff to begin extracting 
the motif. To extract the discovered downstream motif, 
we repeated the process that we used for the upstream 
motif on the TF-MoDISco motif from ZF 1, except 
that we used a probability cutoff of 0.35 and started at 
the downstream end of the TF-MoDISco motif, scan-
ning upstream towards the start; we stopped when 
the difference in nucleotide probability for the nucleo-
tide with the greatest probability decreased by > 0.35 
between two consecutive positions. We used these 
upstream, core, and downstream motifs for further 
analyses. Finally, we constructed six motifs, which we 
call “mega-motifs”:

1.	 The core motif (Supplemental File 1)
2.	 The upstream motif (Supplemental File 1)
3.	 The discovered downstream motif (Supplemental 

File 1)
4.	 The upstream motif followed by the core motif, 

where the motifs were separated by seven bases with 
nucleotide probabilities corresponding to the G/C-
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content in mouse (The upstream and core motifs we 
identified were separated by seven bases because the 
nucleotide probabilities of two most upstream bases 
of the known core motif were not large enough to be 
captured in our core motif.)

5.	 The core motif followed by the discovered down-
stream motif, where the motifs were separated by 
two bases with nucleotide probabilities correspond-
ing to the G/C-content in mouse (The core and dis-
covered downstream motifs we identified were sepa-
rated by two bases.)

6.	 The upstream motif followed by the core motif fol-
lowed by the discovered downstream motif, where 
the upstream and core motifs were separated by 
seven bases with nucleotide probabilities corre-
sponding to the G/C-content in mouse and the core 
and discovered downstream motifs were separated 
by two bases with nucleotide probabilities corre-
sponding to the G/C-content in mouse.

Logistic regression with motif hit scores
We compared the performance of our neural network 
to that of a logistic regression with the scores of motif 
hits of the three motifs from [11]. We received the three 
motifs described in [11] in MEME format [84] from the 
authors of [11]. We scanned the merged CTCF peaks for 
these motifs using FIMO version 4.12.0 [45] with default 
parameters, where the background was the background 
provided to us by the authors of [11]. We computed the 
smallest motif q-value in each peak for each motif and 
used the negative log base ten of that q-value as a fea-
ture in a logistic regression; if there were no motif hits 
with q-value < 0.5 for a motif in a peak, then we set the 
value of that feature to zero for that peak. We trained the 
logistic regression using Scikit-learn version 0.19.1 [85] 
with l2 penalty 1.0. We used the same positives and nega-
tives that we used for our neural network. We trained the 
logistic regression on a combination of the training and 
validation sets that we used for our neural network and 
evaluated the logistic regression using the same test set 
that we used for our neural network. Note that the origi-
nal motifs and spacings between them were found using 
all of the peaks from the wild-type, including those on 
the chromosomes that we held out for testing; thus, we 
may be underestimating the difference in performance 
between our neural networks and the logistic regressions 
with the original motif hit scores.

We also compared the performance of our neural 
network and of the logistic regression with the original 
motif hit scores to the performance of a logistic regres-
sion where the only feature was the top TF-MoDISco 
motif (TF-MoDISco motif with the most supporting 

seqlets) score and to a logistic regression in which the 
only feature was the score of the original upstream motif 
followed by five base pairs followed by the original core 
motif. For the latter, the nucleotide frequencies in the five 
base pairs between the original upstream and original 
core motifs were set to be the background single nucleo-
tide frequencies provided by the authors of [11]. For both 
evaluations, we computed features and trained logistic 
regressions using the same procedures that we used for 
the logistic regressions with the original motif hit scores.

Area under precision‑recall curve computation
We compared the performances of the logistic regres-
sions with motif hit scores to those of our neural net-
works by computing the area under the precision-recall 
curve for each model. We computed this using PRROC 
[86]. We used this metric instead of AUROC because our 
negative set is always larger than our positive set (Sup-
plemental Table 2).

Identifying motif combinations in reads from CTCF 
HT‑SELEX data
We compared the core motif followed by the discovered 
downstream motif to reads from CTCF HT-SELEX data 
from [38]. We first downloaded the reads from cycle 0 
(control), which were taken before the TF was intro-
duced, and cycle 4, the final cycle, that were generated 
for CTCF HT-SELEX in [38]. Since the HT-SELEX reads 
were only 20 bp long, we constructed a partial combina-
tion of the core motif followed by the discovered down-
stream motif, which was the downstream 10 bp of the 
core motif followed by 2 bp with the G/C-content in 
mouse (the core and discovered downstream motif were 
separated by 2 bp) followed by the upstream 4 bp of the 
downstream motif. We then scored the motif match 
to each HT-SELEX. Specifically, we converted the read 
and its reverse complement into a one-hot-encoded 
sequence, computed the dot product of those sequences 
and the partial combination of the core motif followed by 
the discovered downstream motif at every possible align-
ment of the two matrices, and computed the maximum 
of the dot products. We compared the distribution of 
scores for reads from cycle 0 to the distribution of scores 
for reads from cycle 4 using a Wilcoxon rank-sum test; 
the histograms of these distributions are illustrated in 
Fig. 3b. As a control, we repeated this process with only 
the downstream 16 bp of the core motif, and the histo-
grams for this comparison are in Supplemental Figure 4.

We created aggregate motifs by running FIMO [45] 
with the partial combination of the core motif and the 
discovered downstream motif on reads from CTCF HT-
SELEX cycle 4 [38], one-hot-encoding the positions with 
motif hits, averaging the one-hot-encoded matrices, and 
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visualizing these averages as motif logos (Supplemental 
Figure 5). We defined a “motif hit” to be motif hits with 
FIMO q-value less than four different cutoffs – 0.05, 0.01, 
0.005, and 0.001 – and created an aggregate motif for the 
motif hits from each of these cutoffs. We visualized the 
motif logos using meme2images from the MEME suite 
[84].

Comparison of CTCF peaks overlapping CTCF‑s peaks 
to those that do not overlap CTCF‑s peaks
To compare the CTCF peaks that overlap CTCF-s peaks 
to those that do not, we re-processed that biotin-tagged 
data from [28], identified motif hits of the core motif fol-
lowed by the discovered downstream motif in the CTCF 
ChIP-seq peaks, and compared the p-values of the motif 
hits in different subsets of the peaks. We re-processed 
the data and evaluated data quality using the AQUAS 
pipeline [72] with the hg38 genome assembly [87] and 
default parameters; both the CTCF and CTCF-s data had 
NSC > 1.05 and RSC > 0.8. Unless otherwise indicated, 
we used IDR reproducible peaks across self-pseudo-
replicates (Each dataset had only 1 biological replicate.) 
for our analyses, which gave us 15,412 IDR reproducible 
CTCF-s peaks and 50,967 corresponding IDR reproduci-
ble CTCF peaks. We next identified motif hits of the core 
motif followed by the discovered downstream motif in 
the CTCF ChIP-seq peaks. Specifically, we first used bed-
tools [76] to obtain the fasta file for the peaks, next ran 
the MEME suite’s fasta-get-markov [84] with -m 1 on the 
fasta file to obtain a background file, and then ran FIMO 
[45] on the fasta file with the background file and the 
core followed by downstream mega-motif (Supplemen-
tal File 1) with settings --max-stored-scores 50,000,000 
and --thresh 1. We used bedtools intersect with settings 
-wa and -u to obtain CTCF ChIP-seq peaks that overlap 
CTCF-s ChIP-seq peaks. We used bedtools subtract with 
setting -A to obtain CTCF ChIP-seq peaks that do not 
overlap any “relaxed” (includes non-reproducible across 
self-pseudo-replicates) [72] CTCF-s ChIP-seq peaks 
(299,804 “relaxed” CTCF-s peaks). We then obtained 
the p-value of the best core followed by downstream 
mega-motif hit in each of these subsets of CTCF ChIP-
seq peaks, setting the p-value to 1 when no motif hit was 
identified. We compared the distributions of the best 
motif hit p-values for these two subsets of CTCF ChIP-
seq peaks using a Wilcoxon rank-sum test.

To investigate whether our results could be explained 
by a relationship between core followed by discov-
ered downstream motif occurrences and reproduc-
ibility of CTCF ChIP-seq peaks across experiments, 
we also compared CTCF ChIP-seq peaks from [28] to 
those from ENCODE [39]. Since the data in [28] came 
from HeLa cells, we downloaded the “optimal” IDR 

reproducible peaks (ENCODE entry ENCFF772LNY, 
44,072 IDR reproducible CTCF peaks) and “relaxed” 
peaks from pooled reads across replicates (ENCODE 
entry ENCFF331BAX, 300,3000 “relaxed” CTCF peaks) 
from the deepest ENCODE HeLa cell CTCF ChIP-seq 
dataset [39]. We used bedtools intersect with settings 
-wa and -u to obtain CTCF ChIP-seq peaks from [28] 
that overlap ENCODE IDR reproducible CTCF ChIP-
seq peaks. We used bedtools subtract with setting -A to 
obtain CTCF ChIP-seq peaks from [28] that do not over-
lap ENCODE pooled replicate CTCF ChIP-seq peaks. 
We then obtained the p-value of the best core followed 
by downstream mega-motif hit in each of these subsets of 
CTCF ChIP-seq peaks from [28], setting the p-value to 1 
when no motif hit was identified. We compared the dis-
tributions of the p-values for these two subsets of CTCF 
ChIP-seq peaks from [28] using a Wilcoxon rank-sum 
test.

Computational predictions of CTCF motifs using models 
trained on in vitro ZF binding data
To further evaluate whether our discovered downstream 
motif is likely to interact with CTCF ZF 1, we compared 
it to predicted CTCF motifs from models trained using 
in vitro ZF binding data. These models were trained on 
in vitro data measuring the binding specificities of indi-
vidual ZFs; they take ZF amino acid sequences as input 
and output a predicted motif. First, we used RCADE2’s 
RC.sh to predict the motif for CTCF [42]. To explore 
alternative methods, we also put the sequences of CTCF’s 
ZFs into the “Predict PWMs” function of the “Interactive 
PWM Predictor” [40, 41] and predicted the motif using 
each of the three available models: “RF Regression on 
B1H,” “Expanded Linear SVM,” and “Polynomial SVM.” 
We additionally ran each model on ZF 1 alone to confirm 
that the models predicted that ZF 1 interacts with GAG. 
Figure 3a contains the outputs from RCADE2, and Sup-
plemental Figure  6 contains the outputs from the other 
models.

Comparison of CTCF ChIP‑seq peak strengths with different 
combinations of motifs
We compared peak strengths for different motif combi-
nations by identifying occurrences of each mega-motif 
in CTCF peaks, grouping peaks based on mega-motif 
presences, and quantifying properties of each peak in 
each group. We scanned the wild-type mouse CTCF 
peaks for the mega-motifs using FIMO [45] with 
default parameters except for the threshold, which we 
set to 1, and the background, which we set to the out-
put from fasta-get-markov [84] run on the sequences 
of the CTCF peaks with setting -m 1. We used version 
4.12.0 of the MEME suite [84] for all of these analyses.
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We evaluated the relationship between peak strength 
and the presence of the downstream motif by compar-
ing peaks with the core followed by downstream mega-
motif to peaks with only the core motif. We defined 
motif hits as motif occurrences with FIMO p-value 
< 0.0001 (default from FIMO) [45]. When using the 
stricter motif cutoff, we defined motif hits as motif 
occurrences with FIMO q-value < 0.05. We then used 
bedtools version 2.26.0 [76] to identify peaks with the 
core motif, the core motif and no discovered down-
stream motif, and the core followed by downstream 
mega-motif for the different motif hit cutoffs. We 
defined the peak strength to be the natural log of the 
signal from SPP (column seven from the narrowPeak 
files). We compared the peak strength for peaks with 
the core motif and no discovered downstream motif 
versus peaks with the core followed by downstream 
mega-motif by doing a two-sided Wilcoxon rank-sum 
test, and we did a Bonferroni correction of the p-values 
by multiplying them by six (two comparisons for each 
of three cell types/tissues). We repeated this process for 
liver and heart data, which was taken from the mouse 
ENCODE 8-week-old mouse Ren Lab datasets [46].

Since the definition of a motif hit can be sensitive to 
thresholding, we also compared the peak strength of 
CTCF peaks to the -log base ten q-values from FIMO 
[45] of all of the motif occurrences from FIMO regardless 
of their FIMO p-value or q-value. We incorporated all 
motif occurrences by identifying the correlation between 
peak strength and the -log base ten q-values from the 
FIMO for the core motif, the core followed by down-
stream mega-motif, and the upstream followed by core 
mega-motif. We then compared the correlations for the 
core motif and each of the other two mega-motifs using 
a one-sided Fisher’s r-to-z transformation and did a Bon-
ferroni correction of all p-values by multiplying them by 
six (two pairs for each of three tissues).
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